Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.
翻译:粒子群优化( PSO) 是一种基于随机和基于人口的适应优化的搜索算法。 在本文中, 提议了一种路由调查策略, 以提高各种应用路径规划的效率 。 本研究旨在调查 PSO 参数( 粒子数、 重量常数、 粒子常数和全球常数) 对算法性能的影响, 以给出解答路径 。 增加 PSO 参数可以让群落更快地移动到目标点, 但需要很长的时间才能聚集在一起, 因为随机移动太多, 而反之亦是如此。 从各种具有不同参数的模拟中, PSO 算法被证明能够在有障碍的空间提供解答路径 。