Maximal frequent patterns superset checking plays an important role in the efficient mining of complete Maximal Frequent Itemsets (MFI) and maximal search space pruning. In this paper we present a new indexing approach, FastLMFI for local maximal frequent patterns (itemset) propagation and maximal patterns superset checking. Experimental results on different sparse and dense datasets show that our work is better than the previous well known progressive focusing technique. We have also integrated our superset checking approach with an existing state of the art maximal itemsets algorithm Mafia, and compare our results with current best maximal itemsets algorithms afopt-max and FP (zhu)-max. Our results outperform afopt-max and FP (zhu)-max on dense (chess and mushroom) datasets on almost all support thresholds, which shows the effectiveness of our approach.


翻译:最大频率模式超位检查在有效开采完整的最大常客项和最大搜索空间运行中发挥了重要作用。 在本文中, 我们展示了一种新的索引化方法, 即本地最大常客模式( 集成) 的快速LMFI 传播和最大模式超位检查。 不同稀有和密集数据集的实验结果表明, 我们的工作比以往众所周知的进步焦点技术要好。 我们还整合了我们的超位检查方法, 与目前最先进的最高常客项交易算法黑手法的状态, 并将我们的结果与当前最佳最大项交易算法的组合式和FP( zhu) 模型进行比较。 我们的结果在密度( ches 和 蘑菇) 上, 对几乎所有支持阈值( 这显示了我们方法的有效性 ) 。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员