Human character animation is often critical in entertainment content production, including video games, virtual reality or fiction films. To this end, deep neural networks drive most recent advances through deep learning and deep reinforcement learning. In this article, we propose a comprehensive survey on the state-of-the-art approaches based on either deep learning or deep reinforcement learning in skeleton-based human character animation. First, we introduce motion data representations, most common human motion datasets and how basic deep models can be enhanced to foster learning of spatial and temporal patterns in motion data. Second, we cover state-of-the-art approaches divided into three large families of applications in human animation pipelines: motion synthesis, character control and motion editing. Finally, we discuss the limitations of the current state-of-the-art methods based on deep learning and/or deep reinforcement learning in skeletal human character animation and possible directions of future research to alleviate current limitations and meet animators' needs.


翻译:人类性格动画在娱乐内容制作中往往至关重要,包括视频游戏、虚拟现实或虚构电影。为此,深神经网络通过深层学习和深强化学习推动最新进展。在本篇文章中,我们提议对基于骨骼人类性格动画的深层学习或深强化学习的先进方法进行全面调查。首先,我们引入运动数据表述、最常见的人类运动数据集和如何加强基本深层模型以促进对运动数据的空间和时间模式的学习。第二,我们涵盖最新技术方法,将人类动画管道的应用分为三大系列:运动合成、性格控制和运动编辑。最后,我们讨论了目前以深层次学习和(或)深强化人类性格学习为基础的最先进方法的局限性,以及未来研究的可能方向,以缓解当前的局限性并满足动画家的需求。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
27+阅读 · 2020年12月24日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
5+阅读 · 2018年10月11日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
12+阅读 · 2021年6月21日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
27+阅读 · 2020年12月24日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
5+阅读 · 2018年10月11日
Top
微信扫码咨询专知VIP会员