We present the award-winning submission to the WikiKG90Mv2 track of OGB-LSC@NeurIPS 2022. The task is link-prediction on the large-scale knowledge graph WikiKG90Mv2, consisting of 90M+ nodes and 600M+ edges. Our solution uses a diverse ensemble of $85$ Knowledge Graph Embedding models combining five different scoring functions (TransE, TransH, RotatE, DistMult, ComplEx) and two different loss functions (log-sigmoid, sampled softmax cross-entropy). Each individual model is trained in parallel on a Graphcore Bow Pod$_{16}$ using BESS (Balanced Entity Sampling and Sharing), a new distribution framework for KGE training and inference based on balanced collective communications between workers. Our final model achieves a validation MRR of 0.2922 and a test-challenge MRR of 0.2562, winning the first place in the competition. The code is publicly available at: https://github.com/graphcore/distributed-kge-poplar/tree/2022-ogb-submission.
翻译:我们向OGB-LSC@NeurIPS 2022年的WikiKG90Mv2轨道提交获奖论文。任务是对大型知识图WikiKG90Mv2进行连接控制,该图由90M+节点和600M+边缘组成。我们的解决方案使用一套不同的85美元知识图嵌入模型组合,其中包括五个不同的评分功能(TransE、TransH、RotatE、DistMult、ComplEx)和两个不同的损失功能(log-sigmoid、样本软模的软体跨植物性)。每种个人模型都同时使用BESS(Balanced实体取样和分享),即基于工人之间平衡的集体交流的KGE培训和推论的新分配框架,同时进行平行培训。我们的最后模型取得了一个0.2922的校验MRRR和一个0.2562的测试-Challenge MRRR,在竞争中赢得第一个位置。该代码可在以下公开查阅: https://github.com/graphcostratecreatri/ dirate-gard-gram-gram-gramtreal-gy.