Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically. Existing deep learning techniques use generic sequence models (e.g., recurrent neural network, Transformer model, or temporal convolutional network) for time series analysis, which ignore some of its unique properties. For example, the downsampling of time series data often preserves most of the information in the data, while this is not true for general sequence data such as text sequence and DNA sequence. Motivated by the above, in this paper, we propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling. The proposed architecture, namelySCINet, facilitates extracting features with enhanced predictability. Experimental results show that SCINet achieves significant prediction accuracy improvement over existing solutions across various real-world time series forecasting datasets. In particular, it can achieve high fore-casting accuracy for those temporal-spatial datasets without using sophisticated spatial modeling techniques. Our codes and data are presented in the supplemental material.
翻译:时间序列是一个特殊的序列数据类型,这是在时间间隔和按时间顺序顺序顺序排列时收集的一套观测数据。现有的深层学习技术使用通用序列模型(例如经常性神经网络、变异模型或时进网络)进行时间序列分析,这些模型忽视了数据的某些独特特性。例如,时间序列数据的缩小抽样往往保留数据中的大部分信息,而对于文本序列和DNA序列等一般序列数据来说则并非如此。根据上述情况,我们提出一个新的神经网络结构,并将其应用于时间序列预测问题,在时间序列预测问题上,我们通过多个分辨率进行样本变异和互动以进行时间模型的模拟。拟议的结构,即SCINet,有助于以更高的可预测性提取特征。实验结果显示,SCINet在现实世界时间序列预报数据集的现有解决方案上取得了显著的预测准确性改进。特别是,它可以在不使用复杂的空间模型技术的情况下为这些时间空间空间空间空间数据集实现高预测准确性。我们的代码和数据是在补充材料中提供的。