Patient care may be improved by recommending treatments based on patient characteristics when there is treatment effect heterogeneity. Recently, there has been a great deal of attention focused on the estimation of optimal treatment rules that maximize expected outcomes. However, there has been comparatively less attention given to settings where the outcome is right-censored, especially with regard to the practical use of estimators. In this study, simulations were undertaken to assess the finite-sample performance of estimators for optimal treatment rules and estimators for the expected outcome under treatment rules. The simulations were motivated by the common setting in biomedical and public health research where the data is observational, survival times may be right-censored, and there is interest in estimating baseline treatment decisions to maximize survival probability. A variety of outcome regression and direct search estimation methods were compared for optimal treatment rule estimation across a range of simulation scenarios. Methods that flexibly model the outcome performed comparatively well, including in settings where the treatment rule was non-linear. R code to reproduce this study's results are available on Github.
翻译:暂无翻译