One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions $f\diamond g$. They showed that the validity of this conjecture would imply that $\mathbf{P}\not\subseteq\mathbf{NC}^1$. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function $f$, but only for few inner functions $g$. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the $\textit{monotone}$ version of the KRW conjecture. We prove it for every monotone inner function $g$ whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the $s\textbf{-}t$-connectivity, clique, and generation functions. In order to carry this progress back to the $\textit{non-monotone}$ setting, we introduce a new notion of $\textit{semi-monotone}$ composition, which combines the non-monotone complexity of the outer function $f$ with the monotone complexity of the inner function $g$. In this setting, we prove the KRW conjecture for a similar selection of inner functions $g$, but only for a specific choice of the outer function $f$.
翻译:复杂理论中主要的开放问题之一是证明: 超级通俗 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 复杂理论的主要开放问题之一 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 美元 3 3 美元 3 美元 3 美元 3 美元 。 数项工作证明, 美元 美元 美元 3 美元 3 美元 3 美元 美元 3 美元 3 美元 3 美元 3 。 特别是, 这些工程证明了 KRW 3 3 3 3 3 3 美元 3 3 3 3 3 3 3 3 3 3 3 3 美元 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3