Our research in this paper lies at the intersection of collaborative and conversational search. We report on a Wizard of Oz lab study in which 27 pairs of participants collaborated on search tasks over the Slack messaging platform. To complete tasks, pairs of collaborators interacted with a so-called \emph{searchbot} with conversational capabilities. The role of the searchbot was played by a reference librarian. It is widely accepted that conversational search systems should be able to engage in \emph{mixed-initiative interaction} -- take and relinquish control of a multi-agent conversation as appropriate. Research in discourse analysis differentiates between dialog- and task-level initiative. Taking \emph{dialog-level} initiative involves leading a conversation for the sole purpose of establishing mutual belief between agents. Conversely, taking \emph{task-level} initiative involves leading a conversation with the intent to influence the goals of the other agent(s). Participants in our study experienced three \emph{searchbot conditions}, which varied based on the level of initiative the human searchbot was able to take: (1) no initiative, (2) only dialog-level initiative, and (3) both dialog- and task-level initiative. We investigate the effects of the searchbot condition on six different types of outcomes: (RQ1) perceptions of the searchbot's utility, (RQ2) perceptions of workload, (RQ3) perceptions of the collaboration, (RQ4) patterns of communication and collaboration, and perceived (RQ5) benefits and (RQ6) challenges from engaging with the searchbot.


翻译:本文的研究位于协作和对话搜索的交叉点。 我们报告奥兹实验室的巫师研究, 27对参与者在黑消息平台上合作搜索任务。 为了完成任务, 合作者对所谓的emph{ searchbot} 进行了互动。 搜索机器人的作用是由一个参考图书管理员发挥的。 人们普遍认为, 对话搜索系统应该能够参与\ emph{ mixed- initial- interaction} -- 酌情接受并放弃对多机构对话的控制。 讨论分析研究区分了对话与任务级别倡议。 为了完成任务, 合作者对所谓的“emph{diabot ” 进行了互动。 相反, 搜索机器人的作用是由一个参考图书管理员来发挥的。 搜索系统应该能够参与到一个旨在影响其他代理人目标的对话 。 我们研究的参与者经历了三种“emph{ mixed- intitutional discreal discrible 4 Q ”, 根据人类搜索数据库的主动程度, 和搜索Q 的“ Q” 的“ 认识”, 和“irecienceal- delenceal Q” 和“bleal- ladeal Q” 和“我们搜索效果” 之间的倡议和“(我们) 的搜索效果” Q) 和“我们之间, 的搜索效果是: (1) 不倡议和“bisal- 和“bal- Q” 和“bisal- tal- Q” 和“bisal- Q” 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员