项目名称: 融合生理信号的肩关节康复机器人机构设计关键问题与柔顺控制研究
项目编号: No.51475322
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 机械、仪表工业
项目作者: 宋智斌
作者单位: 天津大学
项目金额: 80万元
中文摘要: 针对目前肩关节康复机器人尚存在缺乏机器人机构与复杂构造肩关节的运动协同性、交互的柔顺性以及临床可用的定量化康复评价指标的问题,本项目从人体工学角度出发,利用机构学理论、柔顺控制理论和多源信息融合理论,提出一种端点式肩关节康复机器人系统的方案。针对人机交互环境的多约束条件下,以机器人灵活度与操作度最优为目标,以旋量理论和集合论为理论工具进行机器人机构的综合与优化。建立人体上肢系统和康复机器人系统逆动力学模型,提取康复训练中人体主动参与信息,实现人机交互力与运动的解耦。以柔性关节为载体,建立多体系统柔度矩阵,采用力位自适应混合控制实现人机交互的柔顺性。采用多源信息融合法,融合生理信号、人机交互信息及病人个体运动特征信息,建立人体上肢肩关节运动功能定量化评价指标。本项目的预期成果将为未来临床康复机器人的研制提供理论和技术支持,弥补现有肩关节康复机器人的不足,对临床康复机器人的工程化具有重要意义。
中文关键词: 机器人;机构学;旋量理论;柔顺控制
英文摘要: Aiming at the important issues existing in shoulder rehabilitation using robotics, such as misalignment between mechanism of rehabilitation robot and complex motion in shoulder joint, lack of interactive compliance and precise quantitative assessment of rehabilitation in clinic et.al, a new end-effector robot is proposed for shoulder complex rehabilitation on the basis of mechanism theory and adaptive compliant control from the perspective of clinical anatomy in this project. Under the circumstance of multi-constraints in human machine interaction, mechanisms syntheses and optimization are performed by using screw theory and set theory as tools with the target of dexterity and manipulability. According to building the inverse dynamic models for human upper limb and the rehabilitation robot and obtaining the component of human voluntary motion, the interactive force and motion can be decoupled. Interactive compliance can be obtained via using adaptive hybrid force-position control and building multibody flexibility matrix based on flexible joints. A method of quantitative assessment of motor function of human upper arm is to be built using multi-sources information fusion. Expected outcomes in this project would provide theoretical and technical support to future clinical rehabilitation robot and compensate the flaws existing in shoulder rehabilitation robot. It is very meaningful for the clinical application of rehabilitation robotics.
英文关键词: Robotics;Mechanisms;Screw Theory;Compliant Control