Advanced music recommendation systems are being introduced along with the development of machine learning. However, it is essential to design a music recommendation system that can increase user satisfaction by understanding users' music tastes, not by the complexity of models. Although several studies related to music recommendation systems exploiting negative preferences have shown performance improvements, there was a lack of explanation on how they led to better recommendations. In this work, we analyze the role of negative preference in users' music tastes by comparing music recommendation models with contrastive learning exploiting preference (CLEP) but with three different training strategies - exploiting preferences of both positive and negative (CLEP-PN), positive only (CLEP-P), and negative only (CLEP-N). We evaluate the effectiveness of the negative preference by validating each system with a small amount of personalized data obtained via survey and further illuminate the possibility of exploiting negative preference in music recommendations. Our experimental results show that CLEP-N outperforms the other two in accuracy and false positive rate. Furthermore, the proposed training strategies produced a consistent tendency regardless of different types of front-end musical feature extractors, proving the stability of the proposed method.
翻译:在开发机器学习的同时,正在引进高级音乐建议系统,但是,必须设计一种音乐建议系统,通过了解用户的音乐口味而不是模型的复杂性,提高用户满意度。虽然一些与利用负面偏好的音乐建议系统有关的研究显示,业绩有所改善,但对于这些研究如何导致更好的建议缺乏解释。在这项工作中,我们分析消极偏好在用户音乐口味中的作用,方法是将音乐建议模式与对比式学习偏好(CLEP)进行比较,但采用三种不同的培训战略——利用正面和负面(CLEP-PN)、正(CLEP-P)和负面(CLEP-N)的偏好(CLEP-P)和负面(CLEP-N)两种偏好(PLEP-N)。我们通过鉴定每个系统通过调查获得的少量个性化数据,进一步说明利用音乐建议中的负面偏好的可能性,评估消极偏好的效果。我们的实验结果表明,CLEP-N在准确和假正率方面超越了其他两种。此外,拟议的培训战略产生了一种一致的趋势,而不论前端音乐特征选取曲的种类不同,证明拟议方法的稳定性。