Healthcare workers such as doctors and nurses are expected to be trustworthy and creditable sources of vaccine-related information. Their opinions toward the COVID-19 vaccines may influence the vaccination uptake among the general population. However, vaccine hesitancy is still an important issue even among the healthcare workers. Therefore, it is critical to understand their opinions to help reduce the level of vaccine hesitancy. There have been studies examining healthcare workers' viewpoints on COVID-19 vaccines using questionnaires. Reportedly, a considerably higher proportion of vaccine hesitancy is observed among nurses, compared to doctors. We intend to verify and study this phenomenon at a much larger scale and in fine grain using social media data, which has been effectively and efficiently leveraged by researchers to address real-world issues during the COVID-19 pandemic. More specifically, we use a keyword search to identify healthcare workers and further classify them into doctors and nurses from the profile descriptions of the corresponding Twitter users. Moreover, we apply a transformer-based language model to remove irrelevant tweets. Sentiment analysis and topic modeling are employed to analyze and compare the sentiment and thematic differences in the tweets posted by doctors and nurses. We find that doctors are overall more positive toward the COVID-19 vaccines. The focuses of doctors and nurses when they discuss vaccines in a negative way are in general different. Doctors are more concerned with the effectiveness of the vaccines over newer variants while nurses pay more attention to the potential side effects on children. Therefore, we suggest that more customized strategies should be deployed when communicating with different groups of healthcare workers.


翻译:医生和护士等保健工作者预计将获得可靠和可信赖的疫苗相关信息来源。他们对COVID-19疫苗的看法可能会影响普通民众的接种率。然而,疫苗犹豫仍然是一个重要问题,即使在保健工作者中也是如此。因此,至关重要的是要了解他们的意见,以帮助降低疫苗犹豫率。已经研究了保健工作者对COVID-19疫苗的看法。据报告,与医生相比,在护士中观察到了相当大比例的疫苗犹豫不决。我们打算用社交媒体数据来更大规模地核实和研究这一现象,并用更好的粮食来研究这种现象。研究人员已经有效地利用这些数据解决COVID-19大流行病期间的现实世界问题。更具体地说,我们用关键字搜索来查明保健工作者,并将他们进一步从相应推特用户的简介中划入医生和护士。此外,我们应用基于变异语言模型来消除无关的推文。我们使用感官分析和主题模型来分析和比较医生和护士在推文中贴出的情绪和主题差异。当医生和护士们更多地讨论有关疫苗时,我们发现医生和护士们对疫苗的潜在作用时,我们发现医生们会更加积极地讨论。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员