The study of rare events in molecular and atomic systems such as conformal changes and cluster rearrangements has been one of the most important research themes in chemical physics. Key challenges are associated with long waiting times rendering molecular simulations inefficient, high dimensionality impeding the use of PDE-based approaches, and the complexity or breadth of transition processes limiting the predictive power of asymptotic methods. Diffusion maps are promising algorithms to avoid or mitigate all these issues. We adapt the diffusion map with Mahalanobis kernel proposed by Singer and Coifman (2008) for the SDE describing molecular dynamics in collective variables in which the diffusion matrix is position-dependent and, unlike the case considered by Singer and Coifman, is not associated with a diffeomorphism. We offer an elementary proof showing that one can approximate the generator for this SDE discretized to a point cloud via the Mahalanobis diffusion map. We use it to calculate the committor functions in collective variables for two benchmark systems: alanine dipeptide, and Lennard-Jones-7 in 2D. For validating our committor results, we compare our committor functions to the finite-difference solution or by conducting a "committor analysis" as used by molecular dynamics practitioners. We contrast the outputs of the Mahalanobis diffusion map with those of the standard diffusion map with isotropic kernel and show that the former gives significantly more accurate estimates for the committors than the latter.


翻译:分子和原子系统中的稀有事件研究,如相近变化和集群重新排列,一直是化学物理中最重要的研究主题之一。关键挑战与漫长的等待时间相关,因为分子模拟效率低,高维阻碍使用基于PDE的方法,以及转型过程的复杂性或广度限制了无药可救方法的预测力。扩散图是避免或减轻所有这些问题的有希望的算法。我们用Singer和Coifman(2008年)提出的马哈拉诺比斯内核的分布图来调整SDE的分布图,描述在集体变量中的分子动态,在这些变量中,扩散矩阵取决于位置,而不像Singer和Coifman所考虑的案例中,分子模拟过程效率高,阻碍使用PDF-DE法的方法,以及转型过程的复杂或宽度,我们提供了一个基本证据,表明SDE的生成者可以通过Mahalanobism映射图接近点云。我们用它来计算两种基准系统中的集体变量中的承诺函数:alanine diptide,和Lennard-Jones-7D,其中的分子7D。为了确认我们之前的模型的流流流化结果,我们用前的流流流化分析,我们用前的流流流流流的流的流分析是用来进行较前的流分析,我们使用的流化的流化的流结果,我们用来进行较前的流的流的流的流的流的流的流的流的流的流结果的流的流的流的流的流。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员