In this paper we introduce a weighted LTL over product $\omega$-valuation monoids that satisfy specific properties. We also introduce weighted generalized B\"uchi automata with $\varepsilon$-transitions, as well as weighted B\"uchi automata with $\varepsilon$-transitions over product $\omega$-valuation monoids and prove that these two models are expressively equivalent and also equivalent to weighted B\"uchi automata already introduced in the literature. We prove that every formula of a syntactic fragment of our logic can be effectively translated to a weighted generalized B\"uchi automaton with $\varepsilon$-transitions. We prove that the number of states of the produced automaton is polynomial in the size of the corresponding formula. For restricted product $\omega$-valuation monoids we define a weighted LTL, weighted generalized B\"uchi automata with $\varepsilon$-transitions, and weighted B\"uchi automata with $\varepsilon$-transitions, and we prove the aforementioned results for restricted product $\omega$-valuation monoids as well. The translation of weighted LTL formulas to weighted generalized B\"uchi automata with $\varepsilon$-transitions is now obtained for a restricted syntactical fragment of the logic.
翻译:在本文中, 我们引入了对产品 $\ omega$- 估价单体的加权 LTL 。 我们还引入了一种满足特定特性的, 加权的 LTL 相对于产品 $\ omega$- 估价单体的, 并且证明这两种模型都与文献中已经引入的 加权的 B\\\\\ uchi sutomata 等同, 我们证明我们逻辑的每个组合法碎片都可以有效地转换成 $\ varepsilon- 过渡的, 以及加权的 B\\ uchi 自动马塔。 我们证明, 制成的自动马塔的数量与 $\ varepsilon- 调整公式的大小是多元的。 对于受限的产品 $\ omga, 我们定义了一个加权的 LLLL, 加权的Slusimalimal- imalimational- exprilationalimational- exprilations exports $\ divilalalalalal- slationsal- slationalimations balimations eximational- suplations Brupal- exmal- exmlations Bral- sal- slations bal- slations pral- slupal- sal- silgal- pral- pral- exmal- exmal- sal- exmal- silgalizalizalizalizal- exmal- sildal- sal- sal- t leg) 。