We prove that every class of graphs $\mathscr C$ that is monadically stable and has bounded twin-width can be transduced from some class with bounded sparse twin-width. This generalizes analogous results for classes of bounded linear cliquewidth and of bounded cliquewidth. It also implies that monadically stable classes of bounded twin-widthare linearly $\chi$-bounded.


翻译:我们证明每类图表$\mathscr C$,在月度上稳定,并且已经捆绑了双翼的美元,都可以从某一类中以被捆绑的稀疏双翼方式从某些类中导出。这概括了被捆绑的线性圆形和捆绑的圆形类的类似结果。它还意味着被捆绑的双维双翼的月度稳定等级以线性美元为单位。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
77+阅读 · 2021年3月16日
【经典书】信息理论、推理和学习算法,640页pdf
专知会员服务
83+阅读 · 2020年9月21日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
77+阅读 · 2021年3月16日
【经典书】信息理论、推理和学习算法,640页pdf
专知会员服务
83+阅读 · 2020年9月21日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员