This paper addresses the collision avoidance problem of UAV swarms in three-dimensional (3D) space. The key challenges are energy efficiency and cooperation of swarm members. We propose to combine Artificial Potential Field (APF) with Particle Swarm Planning (PSO). APF provides environmental awareness and implicit coordination to UAVs. PSO searches for the optimal trajectories for each UAV in terms of safety and energy efficiency by minimizing a fitness function. The fitness function exploits the advantages of the Active Contour Model in image processing for trajectory planning. Lastly, vehicle-to-vehicle collisions are detected in advance based on trajectory prediction and are resolved by cooperatively adjusting the altitude of UAVs. Simulation results demonstrate that our method can save up to 80\% of energy compared to state-of-the-art schemes.
翻译:本文讨论三维(3D)空间无人驾驶航空器群避免碰撞的问题,主要挑战在于能源效率和群落成员的合作。我们提议将人造潜在场与粒子蒸汽规划(PSO)相结合。人造潜在场与粒子蒸汽规划(PSO)提供环境意识和间接协调。人造潜在场为无人驾驶航空器提供环境意识和间接协调。PSO通过尽量减少健身功能,寻找每个无人驾驶航空器在安全和能源效率方面的最佳轨迹。健身功能利用了主动电波模型在为轨迹规划进行图像处理方面的优势。最后,根据轨迹预测预先探测到车辆对车辆的碰撞,并通过合作调整无人驾驶飞行器的高度加以解决。模拟结果表明,与最先进的计划相比,我们的方法可以节省高达80°的能源。</s>