Numerical simulations of quantum chromodynamics (QCD) on a lattice require the frequent solution of linear systems of equations with large, sparse and typically ill-conditioned matrices. Algebraic multigrid methods are meanwhile the standard for these difficult solves. Although the linear systems at the coarsest level of the multigrid hierarchy are much smaller than the ones at the finest level, they can be severely ill-conditioned, thus affecting the scalability of the whole solver. In this paper, we investigate different novel ways to enhance the coarsest-level solver and demonstrate their potential using DD-$\alpha$AMG, one of the publicly available algebraic multigrid solvers for lattice QCD. We do this for two lattice discretizations, namely clover-improved Wilson and twisted mass. For both the combination of two of the investigated enhancements, deflation and polynomial preconditioning, yield significant improvements in the regime of small mass parameters. In the clover-improved Wilson case we observe a significantly improved insensitivity of the solver to conditioning, and for twisted mass we are able to get rid of a somewhat artificial increase of the twisted mass parameter on the coarsest level used so far to make the coarsest level solves converge more rapidly.
翻译:量子铬动力学的数值模拟(QCD)在花旗上要求用大、稀薄和通常条件差的矩阵,频繁地解决线性等式系统的线性系统。 代数多格方法是这些困难解答的标准。 虽然多格结构中粗糙层次的线性系统比最高级层次的线性系统小得多, 但它们可能严重条件差, 从而影响整个解答器的缩放性。 本文中, 我们研究各种新颖的方法, 来增强粗糙水平的解答器, 并展示其潜力, 使用DD- $\ alpha$ AMG, 这是一种公开的代数格性多格解答器 。 我们这样做是为了处理两个粗略的分解系统, 即凝固的威尔逊和扭曲的质量。 对于两种调查强化、 通缩缩和多线性先决条件的组合, 都会在小质量参数的制度中带来显著的改进。 在Clover- 精准的威尔逊案中, 我们观察到, 解解解解解剂的敏感度大大提高了解度, 以调和扭曲性地使高调和扭曲的合成的合成的质变的质水平变得更接近。