Selecting an appropriate statistical model to forecast exchange rates is still today a relevant issue for policymakers and central bankers. The so-called Meese and Rogoff puzzle assesses that exchange rate fluctuations are unpredictable. In the literature, a lot of studies tried to solve the puzzle finding alternative predictors and statistical models based on temporal aggregation. In this paper, we propose an approach based on mixed frequency models to overcome the lack of information caused by temporal aggregation. We show the effectiveness of our approach in comparison with other proposed methods by performing CAD/USD exchange rate predictions.
翻译:选择一个适当的统计模型来预测汇率仍然是当今决策者和中央银行家的一个相关问题。 所谓的Meese和Rogoff拼图评估了汇率波动是无法预测的。 在文献中,许多研究试图解决根据时间汇总寻找替代预测器和统计模型的谜题。 在本文中,我们提出了一个基于混合频率模型的方法,以克服时间汇总造成的信息缺乏。我们通过进行计算CAD/美元汇率预测,显示了我们的方法与其他拟议方法相比的有效性。