The aim of this paper is to investigate the theory of subspace designs, which have been originally introduced by Guruswami and Xing in 2013 to give the first construction of positive rate rank-metric codes list decodable beyond half the distance. However, sets of subspaces with special pattern of intersections with other subspaces have been already studied, such as spreads, generalised arcs and caps, and Cameron-Liebler sets. In this paper we provide bounds involving the dimension of the subspaces forming a subspace design and the parameters of the ambient space, showing constructions satisfying the equality in such bounds. Then we also introduce two dualities relations among them. Among subspace designs, those that we call s-designs are central in this paper, as they generalize the notion of s-scattered subspace to subspace design and for their special properties. Indeed, we prove that, for certain values of s, they correspond to the optimal subspace designs, that is those subspace designs that are associated with linear maximum sum-rank metric codes. Special attention has been paid for the case s=1 for which we provide several examples, yielding surprising to families of two-intersection sets with respect to hyperplanes (and hence two-weight linear codes). Moreover, s-designs can be used to construct explicit lossless dimension expanders (a linear-algebraic analogue of expander graphs), without any restriction on the order of the field. Another class of subspace designs we study is those of cutting designs, since they extend the notion of cutting blocking set recently introduced by Bonini and Borello. These designs turn out to be very interesting as they in one-to-one correspondence with minimal sum-rank metric codes. The latter codes have been introduced in this paper and they naturally extend the notions of minimal codes in both Hamming and rank metrics.


翻译:本文的目的是调查亚空间设计理论, 最初由 Guruswami 和 Xing 于2013 年推出的亚空间设计理论, 最初由 Guruswami 和 Xing 推出的亚空间设计理论, 首次构建了正比率级级级代码清单, 超越了一半的距离。 然而, 已经研究过一系列子空间及其特殊特性的特殊交点模式, 如扩展、 一般弧和上限, 以及 Cameron- Liebler 。 在本文中, 我们提供了包含构成子空间设计和环境空间参数的子空间的维度的界限, 显示构造满足了这些界限的平等性。 然后, 我们还引入了两个二种二种双级的双级代码。 我们使用了一些双级的双级代码来扩展了该类的直线级代码。 我们使用双级的双级代码来扩展了这些代码。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员