Query expansion with pseudo-relevance feedback (PRF) is a powerful approach to enhance the effectiveness in information retrieval. Recently, with the rapid advance of deep learning techniques, neural text generation has achieved promising success in many natural language tasks. To leverage the strength of text generation for information retrieval, in this article, we propose a novel approach which effectively integrates text generation models into PRF-based query expansion. In particular, our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback. Moreover, in order to train the generative model, we adopt the conditional generative adversarial nets (CGANs) and propose the PRF-CGAN method in which both the generator and the discriminator are conditioned on the pseudo-relevance feedback. We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets. The experimental results show that our approach achieves comparable performance or outperforms traditional query expansion methods on both the retrieval and reranking tasks.
翻译:使用假相相关性反馈(PRF)的查询扩展是提高信息检索效力的有力方法。最近,随着深层学习技术的迅速发展,神经文字生成在许多自然语言任务中取得了大有希望的成功。为了利用文本生成的强度来检索信息,我们在本条中提出了一个新颖的方法,将文本生成模型有效地纳入基于PRF的查询扩展。特别是,我们的方法通过以初始查询和假相相关性反馈为条件的神经文本生成模型产生更多的查询条件。此外,为了培训基因化模型,我们采用了有条件的基因化对抗网(CGANs),并提出了PRF-CGAN方法,其中生成者和歧视者都以假相相关性反馈为条件。我们用两个基准数据集来评估信息检索任务的业绩。实验结果显示,我们的方法取得了相似的业绩,或者超越了在检索和重排位任务上的传统查询扩展方法。