This paper studies a Stackelberg game wherein a sender (leader) attempts to shape the information of a less informed receiver (follower) who in turn takes an action that determines the payoff of both players. The sender chooses signals to maximize its own utility function while the receiver aims to ascertain the value of a source that is privately known to the sender. It is well known that such sender-receiver games admit a vast number of equilibria and not all signals from the sender can be relied on as truthful. Our main contribution is an exact characterization of the minimum number of distinct source symbols that can be correctly recovered by a receiver in \textit{any} equilibrium of this game; we call this quantity the \textit{informativeness} of the sender. We show that the informativeness is given by the \textit{vertex clique cover number} of a certain graph induced by the utility function, whereby it can be computed based on the utility function alone without the need to enumerate all equilibria. We find that informativeness characterizes the existence of well-known classes of separating, pooling and semi-separating equilibria. We also compare informativeness with the amount of information obtained by the receiver when it is the leader and show that the informativeness is always greater than the latter, implying that the receiver is better off being a follower.


翻译:本文研究一个 Stackelberg 游戏, 其中发送者( 领导者) 试图塑造一个不那么知情的接收者( 追随者) 的信息, 而该接收者则采取一个决定两个玩家报酬的行动。 发送者选择信号以尽量扩大自己的实用功能, 而接收者则旨在确定发送者私下知道的来源的价值。 众所周知, 这种发送者- 接收者游戏允许大量平衡, 而不是所有发送者发出的所有信号都可被信赖为真实信息。 我们的主要贡献是准确描述这个游戏的平衡中接收者能够正确恢复的最起码数量的不同源符号; 我们称此数量为发送者 Textit{ 信息规范性 。 我们表明, 发送者提供的信息性由发送者私下知道的源码提供 。 使用该功能所引出的特定图形, 这样可以仅根据实用功能进行计算, 而无需列出所有不均匀。 我们发现, 信息性能准确地描述出一个已知的不同源符号的最小数量, 。 我们称此数量是发送者 \ textitletitititive{for sleas the sleas leas leas the signations lagiewer by the made the made the made lagister lifervicide the be lavecal by the be lavealddd. as the be the be be be be be be be habilddddddddddddddddddal extical ex exlimildddaltigigialddddddddddaldddddddddddddddddddddddddddddddd 。 我们 我们我们总是 一直 一直 一直以更 以 提供信息的顺序, 我们 信息的顺序, 我们我们总是以更更信息的正确表示信息的正确表示信息, 信息, 我们 信息, 我们 信息的顺序是更更更 信息的顺序, 信息的顺序, 信息的顺序, 信息的正确表示, 信息的顺序是更更是更是比信息的顺序, 和半信息, 和半级, 信息的排序。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员