We consider the problem of identifying sub-groups of participants in a clinical trial that have enhanced treatment effect. Recursive partitioning methods that recursively partition the covariate space based on some measure of between groups treatment effect difference are popular for such sub-group identification. The most commonly used recursive partitioning method, the classification and regression tree algorithm, first creates a large tree by recursively partitioning the covariate space using some splitting criteria and then selects the final tree from all subtrees of the large tree. In the context of subgroup identification, calculation of the splitting criteria and the evaluation measure used for final tree selection rely on comparing differences in means between the treatment and control arm. When covariates are prognostic for the outcome, covariate adjusted estimators have the ability to improve efficiency compared to using differences in means between the treatment and control group. This manuscript develops two covariate adjusted estimators that can be used to both make splitting decisions and for final tree selection. The performance of the resulting covariate adjusted recursive partitioning algorithm is evaluated using simulations and by analyzing a clinical trial that evaluates if motivational interviews improve treatment engagement for substance abusers.
翻译:我们考虑了在临床试验中确定具有强化治疗效果的参与者分组的问题。基于对组之间不同处理效果差异的某种衡量尺度,对共变空间进行递归分解的方法很受欢迎。最常用的递归分解方法,即分类和回归树算法,首先通过使用某种分解标准对共变空间进行递转分解,从而从大树所有子树的所有子树中选择最后的树。在分组识别、计算分解标准和最后选择树所使用的评价措施方面,取决于比较治疗和控制臂之间在手段上的差异。当共变点是结果的预测性时,经调整的估测算器有能力提高效率,而使用治疗和控制组之间在手段上的差异。这一手稿开发了两个经反复调整的测算器,既可用于作出分解决定,又可用于最后选择树。在分组识别、计算分解标准和最后选择的树选择所使用的评价措施方面,取决于对最终树选择所使用的分化分解算法在治疗和控制臂之间所使用的手段上的差异。当共变法对结果作出预测时,如果通过模拟和分析临床试验来评估,则用来评估接触的动机,则能改进试验。