This survey includes systematic generalization and a history of how machine learning addresses it. We aim to summarize and organize the related information of both conventional and recent improvements. We first look at the definition of systematic generalization, then introduce Classicist and Connectionist. We then discuss different types of Connectionists and how they approach the generalization. Two crucial problems of variable binding and causality are discussed. We look into systematic generalization in language, vision, and VQA fields. Recent improvements from different aspects are discussed. Systematic generalization has a long history in artificial intelligence. We could cover only a small portion of many contributions. We hope this paper provides a background and is beneficial for discoveries in future work.
翻译:这项调查包括系统化的概括和关于机器学习如何解决这一问题的历史。我们的目的是总结和组织常规和近期改进的相关信息。我们首先研究系统化的概括定义,然后介绍古典论和联系论者。然后我们讨论不同类型的连接论者和他们如何对待一般化。我们讨论了可变的关联性和因果关系这两个关键问题。我们研究了语言、视觉和VQA领域的系统化概括。我们讨论了不同方面的近期改进。系统化的概括在人工智能方面有着悠久的历史。我们只能涵盖许多贡献中的一小部分。我们希望这份文件提供背景,有益于未来工作中的发现。