Different from the Single Image Super-Resolution(SISR) task, the key for Video Super-Resolution(VSR) task is to make full use of complementary information across frames to reconstruct the high-resolution sequence. Since images from different frames with diverse motion and scene, accurately aligning multiple frames and effectively fusing different frames has always been the key research work of VSR tasks. To utilize rich complementary information of neighboring frames, in this paper, we propose a multi-stage VSR deep architecture, dubbed as PP-MSVSR, with local fusion module, auxiliary loss and re-align module to refine the enhanced result progressively. Specifically, in order to strengthen the fusion of features across frames in feature propagation, a local fusion module is designed in stage-1 to perform local feature fusion before feature propagation. Moreover, we introduce an auxiliary loss in stage-2 to make the features obtained by the propagation module reserve more correlated information connected to the HR space, and introduce a re-align module in stage-3 to make full use of the feature information of the previous stage. Extensive experiments substantiate that PP-MSVSR achieves a promising performance of Vid4 datasets, which achieves a PSNR of 28.13dB with only 1.45M parameters. And the PP-MSVSR-L exceeds all state of the art method on REDS4 datasets with considerable parameters. Code and models will be released in PaddleGAN\footnote{https://github.com/PaddlePaddle/PaddleGAN.}.
翻译:与单一图像超级分辨率(SISSR)任务不同的是,视频超级分辨率(VSR)任务的关键是充分利用跨框架的补充信息来重建高分辨率序列。由于不同框架的图像与不同的运动和场景不同,精确地对多个框架进行精确的匹配并有效地对不同的框架进行引信化,这一直是VSR任务的关键研究工作。为了利用相邻框架的丰富补充信息,我们在本文件中提议了一个多阶段VSR深层结构,称为PP-MSVSR,并配有本地融合模块、辅助损失和重新连接模块,以逐步完善强化的结果。具体地说,为了加强功能传播中跨框架的功能融合,一个本地组合模块在阶段1中设计,在功能传播之前进行本地特性融合。此外,我们引入了第2阶段的辅助损失,以使传播模块所获取的与人力资源空间有关的信息更加相关,并在第3阶段引入一个重新定位模块,以充分利用先前阶段的特征信息。广泛的实验证实PP-MS-PASR 13和RED-MAS 的模型在VDG-MA4号数据库中将实现一个充满前景的PDS-MA-PDM-PDS/PDS/PDS/PDS的模型。