Our research focuses on developing a computational framework to simulate the transmission dynamics of COVID-19 pandemic. We examine the development of a system named ADRIANA for the simulation using South Africa as a case study. The design of the ADRIANA system interconnects three sub-models to establish a computational technique to advise policy regarding lockdown measures to reduce the transmission pattern of COVID-19 in South Africa. Additionally, the output of the ADRIANA can be used by healthcare administration to predict peak demand time for resources needed to treat infected individuals. ABM is suited for our research experiment, but to prevent the computational constraints of using ABM-based framework for this research, we develop an SEIR compartmental model, a discrete event simulator, and an optimized surrogate model to form a system named ADRIANA. We also ensure that the surrogate's findings are accurate enough to provide optimal solutions. We use the Genetic Algorithm (GA) for the optimization by estimating the optimal hyperparameter configuration for the surrogate. We concluded this study by discussing the solutions presented by the ADRIANA system, which aligns with the primary goal of our study to present an optimal guide to lockdown policy by the government and resource management by the hospital administrators.
翻译:我们的研究重点是开发一个计算框架,以模拟COVID-19大流行的传播动态。我们研究开发一个名为ADRIANA的系统,以南非为案例研究进行模拟。ADRIAN系统的设计将三个小模型连接起来,以建立一个计算技术,就减少COVID-19在南非的传播模式的封闭措施提供政策建议。此外,ADRIANA的产出可以被保健管理部门用来预测治疗受感染个人所需的资源的高峰需求时间。ABM适合我们的研究实验,但为了防止使用以反弹道导弹为基础的框架进行这一研究的计算限制,我们开发了SEIR区际模型、一个离散事件模拟器和一个优化的代孕模型,以形成一个名为ADRINA的系统。我们还确保代孕检测结果足够准确,以提供最佳解决办法。我们使用遗传Algorithm(GA)来优化治疗受感染个人所需要的资源的需求时间。我们通过讨论ADIRINA系统提出的解决方案,这个系统与我们目前最理想的医院管理指南一致,从而实现我们目前最佳的医院管理目标。