Deep-Neural-Network (DNN) based speaker verification sys-tems use the angular softmax loss with margin penalties toenhance the intra-class compactness of speaker embeddings,which achieved remarkable performance. In this paper, we pro-pose a novel angular loss function called adaptive margin cir-cle loss for speaker verification. The stage-based margin andchunk-based margin are applied to improve the angular discrim-ination of circle loss on the training set. The analysis on gradi-ents shows that, compared with the previous angular loss likeAdditive Margin Softmax(Am-Softmax), circle loss has flexi-ble optimization and definite convergence status. Experimentsare carried out on the Voxceleb and SITW. By applying adap-tive margin circle loss, our best system achieves 1.31%EER onVoxceleb1 and 2.13% on SITW core-core.
翻译:基于深神经网络的声器校验系统(DNN)使用具有边际惩罚的角软轴损失来强化声器嵌入器的门内紧凑性,从而取得了显著的性能。在本文中,我们主张使用一种新型的角损失功能,称为适应性边心损失功能,供声器校验。基于级基边和 ⁇ 基边的边距用于改进训练成套材料上圆圈损失的角对角比。关于辐射物质的分析表明,与以前诸如Appitive Margin Softmax(Am-Softmax)的角损失相比,圆形损失具有可灵活优化和确定趋同状态。在Voxceleb和SITW进行的实验。通过应用亚性边边圈损失,我们的最佳系统在Voxceleb1和SITW核心中实现了1.31%的EER和2.13%。