We rewrite the numerical ansatz of the Method of Auxiliary Sources (MAS), typically used in computational electromagnetics, as a neural network, i.e. as a composed function of linear and activation layers. MAS is a numerical method for Partial Differential Equations (PDEs) that employs point sources, which are also exact solutions of the considered PDE, as radial basis functions to match a given boundary condition. In the framework of neural networks we rely on optimization algorithms such as Adam to train MAS and find both its optimal coefficients and positions of the central singularities of the sources. In this work we also show that the MAS ansatz trained as a neural network can be used, in the case of an unknown function with a central singularity, to detect the position of such singularity.
翻译:我们重写作为神经网络的计算电磁中通常使用的辅助源方法(MAS)的数值 ansatz,作为神经网络,即由线性和活化层组成的函数。MAS是使用点源的局部差异方程式(PDEs)的数值方法,它也是被考虑的PDE的精确解决办法,作为匹配特定边界条件的辐射基函数。在神经网络的框架内,我们依靠优化算法,例如Adam来培训MAS,并找到其最佳系数和源中央特性的位置。在这项工作中,我们还表明,在具有中心特性的未知函数的情况下,可以使用经过训练的神经网络的MAS ansaz来探测这种特性的位置。