Mathematical modeling is an essential step, for example, to analyze the transient behavior of a dynamical process and to perform engineering studies such as optimization and control. With the help of first-principles and expert knowledge, a dynamic model can be built, but for complex dynamic processes, appearing, e.g., in biology, chemical plants, neuroscience, financial markets, this often remains an onerous task. Hence, data-driven modeling of the dynamics process becomes an attractive choice and is supported by the rapid advancement in sensor and measurement technology. A data-driven approach, namely operator inference framework, models a dynamic process, where a particular structure of the nonlinear term is assumed. In this work, we suggest combining the operator inference with certain deep neural network approaches to infer the unknown nonlinear dynamics of the system. The approach uses recent advancements in deep learning and possible prior knowledge of the process if possible. We also briefly discuss several extensions and advantages of the proposed methodology. We demonstrate that the proposed methodology accomplishes the desired tasks for dynamics processes encountered in neural dynamics and the glycolytic oscillator.
翻译:例如,数学模型是分析动态过程的短暂行为和进行优化和控制等工程研究的关键步骤。在第一原则和专家知识的帮助下,可以建立一个动态模型,但对于生物、化学厂、神经科学、金融市场等出现的复杂动态过程来说,这往往仍是一项繁重的任务。因此,动态过程的数据驱动模型成为一个有吸引力的选择,并得到传感器和测量技术快速进步的支持。数据驱动方法,即操作者推论框架,模型一个动态过程,其中假设了非线性术语的特定结构。在这项工作中,我们建议将操作者推论与某些深线性网络方法结合起来,以推断系统未知的非线性动态。该方法利用最近的进展,并在可能的情况下对进程进行深层学习,并可能事先了解。我们还简要讨论了拟议方法的若干扩展和优点。我们证明,拟议的方法完成了在神经动态和晶体振荡器中遇到的动态进程的预期任务。