Mathematical modeling is an essential step, for example, to analyze the transient behavior of a dynamical process and to perform engineering studies such as optimization and control. With the help of first-principles and expert knowledge, a dynamic model can be built, but for complex dynamic processes, appearing, e.g., in biology, chemical plants, neuroscience, financial markets, this often remains an onerous task. Hence, data-driven modeling of the dynamics process becomes an attractive choice and is supported by the rapid advancement in sensor and measurement technology. A data-driven approach, namely operator inference framework, models a dynamic process, where a particular structure of the nonlinear term is assumed. In this work, we suggest combining the operator inference with certain deep neural network approaches to infer the unknown nonlinear dynamics of the system. The approach uses recent advancements in deep learning and possible prior knowledge of the process if possible. We also briefly discuss several extensions and advantages of the proposed methodology. We demonstrate that the proposed methodology accomplishes the desired tasks for dynamics processes encountered in neural dynamics and the glycolytic oscillator.


翻译:例如,数学模型是分析动态过程的短暂行为和进行优化和控制等工程研究的关键步骤。在第一原则和专家知识的帮助下,可以建立一个动态模型,但对于生物、化学厂、神经科学、金融市场等出现的复杂动态过程来说,这往往仍是一项繁重的任务。因此,动态过程的数据驱动模型成为一个有吸引力的选择,并得到传感器和测量技术快速进步的支持。数据驱动方法,即操作者推论框架,模型一个动态过程,其中假设了非线性术语的特定结构。在这项工作中,我们建议将操作者推论与某些深线性网络方法结合起来,以推断系统未知的非线性动态。该方法利用最近的进展,并在可能的情况下对进程进行深层学习,并可能事先了解。我们还简要讨论了拟议方法的若干扩展和优点。我们证明,拟议的方法完成了在神经动态和晶体振荡器中遇到的动态进程的预期任务。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
37+阅读 · 2021年2月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
37+阅读 · 2021年2月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员