We introduce SHARE: a System for Hierarchical Assistive Recipe Editing to assist home cooks with dietary restrictions -- a population under-served by existing cooking resources. Our hierarchical recipe editor makes necessary substitutions to a recipe's ingredients list and re-writes the directions to make use of the new ingredients. We introduce the novel RecipePairs dataset of 84K pairs of similar recipes in which one recipe satisfies one of seven dietary constraints, allowing for supervised training of such recipe editing models. Experiments on this dataset demonstrate that our system produces convincing, coherent recipes that are appropriate for a target dietary constraint (contain no prohibited ingredients). We show that this is a challenging task that cannot be adequately solved with human-written ingredient substitution rules or straightforward adaptation of state-of-the-art models for recipe generation. We further demonstrate through human evaluations and real-world cooking trials that recipes edited by our system can be easily followed by home cooks to create delicious and satisfactory dishes.


翻译:我们引入了一个等级辅助食谱编辑系统,帮助家庭厨师饮食上的限制 -- -- 即现有烹饪资源不足的人口。我们的分级食谱编辑对食谱成分列表做了必要的替换,并重写了使用新成分的方向。我们引入了84K对类似食谱的新型食谱配方数据集,其中一种配方满足了七种饮食限制中的一种,允许对食谱编辑模式进行有监督的培训。这一数据集的实验表明,我们的系统产生了令人信服的、一致的配方,适合目标饮食限制(不含违禁成分)。我们表明,这是一项艰巨的任务,不能通过人造成分替代规则或直接调整最先进的食谱制作模式来充分解决。我们通过人类评估和现实世界烹饪试验进一步证明,我们系统编辑的食谱很容易被家厨师跟踪,以创造美味和满意的菜盘。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员