This paper studies a general class of stochastic population processes in which agents interact with one another over a network. Agents update their behaviors in a random and decentralized manner based only on their current state and the states of their neighbors. It is well known that when the number of agents is large and the network is a complete graph (has all-to-all information access), the macroscopic behavior of the population converges to a differential equation called a {\it mean-field approximation}. When the network is not complete, it is unclear in general whether there exists a suitable mean-field approximation for the macroscopic behavior of the population. This paper provides general conditions on the network and policy dynamics for which a suitable mean-field approximation exists. First, we show that as long as the network is well-connected, the macroscopic behavior of the population concentrates around the {\it same} mean-field system as the complete-graph case. Next, we show that as long as the network is sufficiently dense, the macroscopic behavior of the population concentrates around a mean-field system that is, in general, {\it different} from the mean-field system obtained in the complete-graph case. Finally, we provide conditions under which the mean-field approximation is equivalent to the one obtained in the complete-graph case.


翻译:本文研究一个总体类的随机人口过程, 使代理商在网络上相互互动。 代理商仅根据他们目前的状况和邻居的状态, 以随机和分散的方式更新他们的行为。 众所周知, 当代理商的数量巨大, 网络是一个完整的图表( 拥有全到全部的信息访问) 时, 人口宏观行为会与一个叫做“ 平均场近似” 的差别方程式相融合。 当网络不完善时, 一般说来还不清楚是否有适合人口宏观行为的平均场近似。 本文以随机和分散的方式更新了他们的行为。 这份代理商提供了网络和政策动态的一般条件, 并且存在一个合适的平均场近似的情况。 首先, 我们显示只要网络是庞大的, 人口宏观行为与整个平均场系统一样。 我们显示只要网络足够稠密, 人口集中的宏观表面行为方式围绕一个完整的平均场系统, 就能提供我们从中获取的中等值的数据。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年3月17日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员