Accurate mechanisms for forecasting solar irradiance and insolation provide important information for the planning of renewable energy and agriculture projects as well as for environmental and socio-economical studies. This research introduces a pipeline for the one-day ahead forecasting of solar irradiance and insolation that only requires solar irradiance historical data for training. Furthermore, our approach is able to deal with missing data since it includes a data imputation state. In the prediction stage, we consider four data-driven approaches: Autoregressive Integrated Moving Average (ARIMA), Single Layer Feed Forward Network (SL-FNN), Multiple Layer Feed Forward Network (FL-FNN), and Long Short-Term Memory (LSTM). The experiments are performed in a real-world dataset collected with 12 Automatic Weather Stations (AWS) located in the Nari\~no - Colombia. The results show that the neural network-based models outperform ARIMA in most cases. Furthermore, LSTM exhibits better performance in cloudy environments (where more randomness is expected).
翻译:预测太阳辐照和孤立的准确机制为规划可再生能源和农业项目以及环境和社会经济研究提供了重要信息。这项研究为未来一天的太阳辐照和孤立预测开辟了一条管道,只需进行太阳辐照和孤立的历史数据培训即可进行。此外,我们的方法能够处理缺失的数据,因为它包括一个数据估算状态。在预测阶段,我们认为四种数据驱动的方法:自动递增综合移动平均值(ARIMA)、单层进料前沿网络(SL-FNN)、多层进料前沿网络(FL-FNNN)以及长期短期内存(LSTM)。实验是在由位于哥伦比亚纳里尼诺的12个自动气象站(AWS)收集的一个真实世界数据集中进行的。结果显示,大多数情况下,以神经网络为基础的模型都超越了ARIMA。此外,LSTM在云层环境中(预计更加随机)表现更好。