The Maximum Likelihood Estimator (MLE) serves an important role in statistics and machine learning. In this article, for i.i.d. variables, we obtain constant-specified and sharp concentration inequalities and oracle inequalities for the MLE only under exponential moment conditions. Furthermore, in a robust setting, the sub-Gaussian type oracle inequalities of the log-truncated maximum likelihood estimator are derived under the second-moment condition.
翻译:最大潜力模拟器(MLE)在统计和机器学习方面起着重要作用。在本条中,对于例如,对于变数,我们只是在指数时刻条件下才为MLE获得固定和明显的集中不平等和甲骨文不平等。此外,在一种稳健的环境中,在二时条件下,在日出最大可能性估计器的亚高加索型甲骨文不平等中,根据二时条件得出了日出最大可能性估计器。