Understanding the evolution of communities in developer social networks (DSNs) around open source software (OSS) projects can provide valuable insights about the socio-technical process of OSS development. Existing studies show the evolutionary behaviors of social communities can effectively be described using patterns including split, shrink, merge, expand, emerge, and extinct. However, existing pattern-based approaches are limited in supporting quantitative analysis, and are potentially problematic for using the patterns in a mutually exclusive manner when describing community evolution. In this work, we propose that different patterns can occur simultaneously between every pair of communities during the evolution, just in different degrees. Four entropy-based indices are devised to measure the degree of community split, shrink, merge, and expand, respectively, which can provide a comprehensive and quantitative measure of community evolution in DSNs. The indices have properties desirable to quantify community evolution including monotonicity, and bounded maximum and minimum values that correspond to meaningful cases. They can also be combined to describe more patterns such as community emerge and extinct. We conduct experiments with real-world OSS projects to evaluate the validity of the proposed indices. The results suggest the proposed indices can effectively capture community evolution, and are consistent with existing approaches in detecting evolution patterns in DSNs with an accuracy of 94.1\%. The results also show that the indices are useful in predicting OSS team productivity with an accuracy of 0.718. In summary, the proposed approach is among the first to quantify the degree of community evolution with respect to different patterns, which is promising in supporting future research and applications about DSNs and OSS development.


翻译:现有研究表明,社会社群的进化行为可以使用分裂、缩小、合并、扩大、出现和灭绝等模式来有效描述,但是,现有的基于模式的方法在支持定量分析方面有限,在描述社区演变时,可能难以以相互排斥的方式使用这些模式。在这项工作中,我们提议,在演化过程中,每个社区之间可同时出现不同的模式,只是在不同程度上,对开放源码软件发展的社会技术进程提供宝贵的见解。设计了四个基于温和基础的指数,以衡量社区分裂、缩小、合并和扩展的程度,这可以全面、量化地衡量DSNs的社区演变情况。这些指数具有特性,有助于量化社区演化,包括单一性,并将拟议中的最大和最低值与有意义的案例相对应。它们还可以结合描述更多的模式,如社区出现和灭绝。我们首先与现实世界的开放源码软件项目进行实验,以评价拟议的指数的有效性。关于拟议的指数的汇总程度可以有效地反映社区演变、缩略、合并和扩展程度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员