The objective of Federated Learning (FL) is to perform statistical inference for data which are decentralised and stored locally on networked clients. FL raises many constraints which include privacy and data ownership, communication overhead, statistical heterogeneity, and partial client participation. In this paper, we address these problems in the framework of the Bayesian paradigm. To this end, we propose a novel federated Markov Chain Monte Carlo algorithm, referred to as Quantised Langevin Stochastic Dynamics which may be seen as an extension to the FL setting of Stochastic Gradient Langevin Dynamics, which handles the communication bottleneck using gradient compression. To improve performance, we then introduce variance reduction techniques, which lead to two improved versions coined \texttt{QLSD}$^{\star}$ and \texttt{QLSD}$^{++}$. We give both non-asymptotic and asymptotic convergence guarantees for the proposed algorithms. We illustrate their performances using various Bayesian Federated Learning benchmarks.


翻译:联邦学习联合会(FL)的目标是对在网络客户中分散和储存的本地数据进行统计推断。FL提出了许多制约因素,包括隐私和数据所有权、通信管理费、统计多样性和部分客户参与。在本文件中,我们在巴伊西亚范式框架内处理这些问题。为此,我们提议采用新的联邦式马克夫链蒙特卡洛算法,称为量化的兰格文斯托切斯特动态,可视为FL设置Stochatic Gradient Langevin Dynamics的延伸,该套法使用梯度压缩处理通信瓶颈。为改进性能,我们随后引入了减少差异技术,从而导致两种改进版本的硬币值 \ textt ⁇ LSD}$ 和\ textttt ⁇ LSD}$。我们为拟议的算法提供非抽调和抽调调调调调调调调的合并保证。我们用各种Bayesian联邦学习基准来说明其业绩。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员