Pedestrian detection in the wild remains a challenging problem especially when the scene contains significant occlusion and/or low resolution of the pedestrians to be detected. Existing methods are unable to adapt to these difficult cases while maintaining acceptable performance. In this paper we propose a novel feature learning model, referred to as CircleNet, to achieve feature adaptation by mimicking the process humans looking at low resolution and occluded objects: focusing on it again, at a finer scale, if the object can not be identified clearly for the first time. CircleNet is implemented as a set of feature pyramids and uses weight sharing path augmentation for better feature fusion. It targets at reciprocating feature adaptation and iterative object detection using multiple top-down and bottom-up pathways. To take full advantage of the feature adaptation capability in CircleNet, we design an instance decomposition training strategy to focus on detecting pedestrian instances of various resolutions and different occlusion levels in each cycle. Specifically, CircleNet implements feature ensemble with the idea of hard negative boosting in an end-to-end manner. Experiments on two pedestrian detection datasets, Caltech and CityPersons, show that CircleNet improves the performance of occluded and low-resolution pedestrians with significant margins while maintaining good performance on normal instances.
翻译:野生的突触探测仍是一个具有挑战性的问题,特别是当现场包含有待探测行人的重大封闭性和/或低分辨率时,尤其当现场包含有待探测行人的重大隐蔽性和/或低分辨率时,尤其当犯罪现场包含有待探测行人的重大隐蔽性和/或低分辨率时,现有方法无法适应这些困难情况,同时保持可接受的性能。在本文件中,我们提出一个新的地貌学习模型,称为CirconNet,以通过模拟过程来适应特征:在人们看低分辨率和隐蔽物体时,以更细的尺寸再次关注它;如果物体无法首次被明确识别,则以更细的尺寸再次关注它。CirdNet作为一组地貌金字塔实施,并使用重量共享路径增强来更好地聚合特征。它的目标是利用多个自上而下和自下而上的道路重新定位特性适应和迭代物体探测。为了充分利用CircNet的特性适应能力,我们设计了一个实例解剖析培训战略,侧重于探测行人中各种分辨率和每个周期内不同程度的行人的情况。具体地,如果无法在终端到终端方式上硬负加速推进,则将两个行距探测数据探测数据装置进行实验,同时改进正常的轨道和市间间间分辨率和市间分辨率。