We introduce a high-dimensional cubical complex, for any dimension t>0, and apply it to the design of quantum locally testable codes. Our complex is a natural generalization of the constructions by Panteleev and Kalachev and by Dinur et. al of a square complex (case t=2), which have been applied to the design of classical locally testable codes (LTC) and quantum low-density parity check codes (qLDPC) respectively. We turn the geometric (cubical) complex into a chain complex by relying on constant-sized local codes $h_1,\ldots,h_t$ as gadgets. A recent result of Panteleev and Kalachev on existence of tuples of codes that are product expanding enables us to prove lower bounds on the cycle and co-cycle expansion of our chain complex. For t=4 our construction gives a new family of "almost-good" quantum LTCs -- with constant relative rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks. Both the distance of the quantum code and its local testability are proven directly from the cycle and co-cycle expansion of our chain complex.
翻译:暂无翻译