Efficient omission of symmetric solution candidates is essential for combinatorial problem-solving. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs must be done before every invocation of a solver. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using the Inductive Logic Programming paradigm. Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs for a collection of combinatorial problems. The obtained results indicate that our approach significantly outperforms a state-of-the-art instance-specific method as well as the direct application of a solver.
翻译:对称解决方案候选人的有效疏漏对于分解问题的解决至关重要。 多数现有办法都是针对具体案例的,侧重于每个特定问题实例对对对称断开制约(SBC)的自动计算。然而,在大规模实例或高级问题编码中应用这类办法可能存在问题,因为计算出来的SBC是建议性的,因此,不能有意义地解释或转移到其他实例。因此,在每次援引一个解决者之前,都必须对SBC进行耗时的重计。为了克服这些限制,我们引入了一种新的面向回答设置程序的模式,将小问题案例的SBC提升为一套可解释的一阶制约,使用Intaminic逻辑规划模式。实验表明,我们的框架有能力从特定案例的SBC中学习收集组合问题的一般制约。 所获得的结果表明,我们的方法大大超出一个针对具体案例的状态方法以及一个解决者的直接应用。