Network decomposition is a central concept in the study of distributed graph algorithms. We present the first polylogarithmic-round deterministic distributed algorithm with small messages that constructs a strong-diameter network decomposition with polylogarithmic parameters. Concretely, a ($C$, $D$) strong-diameter network decomposition is a partitioning of the nodes of the graph into disjoint clusters, colored with $C$ colors, such that neighboring clusters have different colors and the subgraph induced by each cluster has a diameter at most $D$. In the weak-diameter variant, the requirement is relaxed by measuring the diameter of each cluster in the original graph, instead of the subgraph induced by the cluster. A recent breakthrough of Rozho\v{n} and Ghaffari [STOC 2020] presented the first $\text{poly}(\log n)$-round deterministic algorithm for constructing a weak-diameter network decomposition where $C$ and $D$ are both in $\text{poly}(\log n)$. Their algorithm uses small $O(\log n)$-bit messages. One can transform their algorithm to a strong-diameter network decomposition algorithm with similar parameters. However, that comes at the expense of requiring unbounded messages. The key remaining qualitative question in the study of network decompositions was whether one can achieve a similar result for strong-diameter network decompositions using small messages. We resolve this question by presenting a novel technique that can transform any black-box weak-diameter network decomposition algorithm to a strong-diameter one, using small messages and with only moderate loss in the parameters.


翻译:网络分解是分布式图表算法研究中的核心概念。 我们展示了第一个多式圆柱形确定式分布式算法, 含有小信息, 构建了强直径网络分解, 并带有多对数参数。 具体地说, 一个( $C, $D$) 强直径网络分解是将图形节点分割成分解组, 彩色为美元, 相邻组的颜色不同, 每个组群的子组的分解值直径最高为$D$。 在弱度直径模型变异变量中, 通过测量原始图中每个集的直径, 而不是集集引出子图。 一个( Rozhov{n} 和 Ghaffari [STOC 2020] 的最近突破是将图形的节点分割成分解组合, 以 $text{poly rom commetage, $C$ and $D$Dgrodegraphle com 两者都以 $m- decom ral requistration com com) exmal deal decomst exmation exmal deal exmation exmation a exmation a exmalmagistration exmation exmationaldia exmalmaxl export a export a exmaltilex ex ex exm exmetaldaldaldaldaldald exm exmationaldaldalizutus.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
3+阅读 · 2020年2月5日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员