Clock-dependent probabilistic timed automata extend classical timed automata with discrete probabilistic choice, where the probabilities are allowed to depend on the exact values of the clocks. Previous work has shown that the quantitative reachability problem for clock-dependent probabilistic timed automata with at least three clocks is undecidable. In this paper, we consider the subclass of clock-dependent probabilistic timed automata that have one clock, that have clock dependencies described by affine functions, and that satisfy an initialisation condition requiring that, at some point between taking edges with non-trivial clock dependencies, the clock must have an integer value. We present an approach for solving in polynomial time quantitative and qualitative reachability problems of such one-clock initialised clock-dependent probabilistic timed automata. Our results are obtained by a transformation to interval Markov decision processes.


翻译:以时间为依存的自定义自动数据扩展经典定时自动数据, 且具有离散的概率选择, 允许概率取决于时钟的确切值。 先前的工作已经显示, 至少 3 个时钟的基于时钟的根据时间的概率自动数据, 其数量可达性问题无法确定 。 在本文中, 我们考虑一个亚类的基于时钟的基于时钟的根据时间性定时自动数据, 它有一个时钟, 由直角函数描述时钟的依存性, 并且满足初始化条件, 要求时间在与非三时钟依赖性边缘的某个点上, 时钟必须具有整数值 。 我们提出一个方法来解决这种一时钟的基于时钟的根据时钟的不稳定性定时数的自动数据。 我们的结果通过转换到间隔 Markov 的决策过程获得 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月10日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员