Human reasoning can often be understood as an interplay between two systems: the intuitive and associative ("System 1") and the deliberative and logical ("System 2"). Neural sequence models -- which have been increasingly successful at performing complex, structured tasks -- exhibit the advantages and failure modes of System 1: they are fast and learn patterns from data, but are often inconsistent and incoherent. In this work, we seek a lightweight, training-free means of improving existing System 1-like sequence models by adding System 2-inspired logical reasoning. We explore several variations on this theme in which candidate generations from a neural sequence model are examined for logical consistency by a symbolic reasoning module, which can either accept or reject the generations. Our approach uses neural inference to mediate between the neural System 1 and the logical System 2. Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.


翻译:人类推理往往可以被理解为两个系统之间的相互作用:直觉和关联(“系统1”)和议事和逻辑(“系统2”)。神经序列模型 -- -- 在完成复杂、结构化任务方面越来越成功 -- -- 展示了系统1的优势和失败模式:它们是快速的,从数据中学习模式,但往往不连贯和不连贯。在这项工作中,我们寻求一种轻量的、没有培训的改进现有系统1类序列模型的手段,方法是添加以系统2为根据的逻辑推理。我们探讨了关于这个主题的若干变异,即神经序列模型的候选世代通过一个象征性推理模块接受或拒绝代代。我们的方法使用了神经系统1和逻辑系统2之间的线性推理法。在扎实的故事生成和基于指令的演练中的结果显示,这一方法可以提高神经基世代的一致性和准确性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年7月3日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年9月5日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
VIP会员
Top
微信扫码咨询专知VIP会员