Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers for datasets of size >= 100 sentences. Exploiting the formal similarity of the compositional model of meaning by Coecke et al. (2010) with quantum theory, we create representations for sentences that have a natural mapping to quantum circuits. We use these representations to implement and successfully train two NLP models that solve simple sentence classification tasks on quantum hardware. We describe in detail the main principles, the process and challenges of these experiments, in a way accessible to NLP researchers, thus paving the way for practical Quantum Natural Language Processing.
翻译:量子自然语言处理(QNLP)涉及拟在量子硬件上运行的NLP模型的设计和实施,本文介绍了首次NLP在Nisy中级量子(NISQ)计算机上为100个句子大小的数据集进行的国家LP实验的结果。利用Coecke等人(2010年)的构成模型与量子理论的正式相似性,我们为具有量子电路自然映射功能的句子设置了表述方式。我们利用这些表述方式实施并成功培训了两个NLP模型,解决了量子硬件的简单句子分类任务。我们详细描述了这些实验的主要原则、过程和挑战,国家LP研究人员可以使用这种方式,从而为实际的量子自然语言处理铺平了道路。