Currently there are three major paradigms of quantum computation, the gate model, annealing, and walks on graphs. The gate model and quantum walks on graphs are universal computation models, while annealing plays within a specific subset of scientific and numerical computations. Quantum walks on graphs have, however, not received such widespread attention and thus the door is wide open for new applications and algorithms to emerge. In this paper we explore teaching a coined discrete time quantum walk on a regular graph a probability distribution. We go through this exercise in two ways. First we adjust the angles in the maximal torus $\mathbb{T}^d$ where $d$ is the regularity of the graph. Second, we adjust the parameters of the basis of the Lie algebra $\mathfrak{su}(d)$. We also discuss some hardware and software concerns as well as immediate applications and the several connections to machine learning.


翻译:目前,有三大量子计算模式,即门模型、annealing和在图表上行走。图形上的门模型和量子行走是通用的计算模型,而门模型和量子行走则在科学和数字计算的特定子集中发挥作用。但是,图表上的量子行走没有受到如此广泛的注意,因此,对于新的应用和算法的出现,门是敞开的。在本文中,我们探索如何在普通图形上教授一个硬体离散时间行走的概率分布。我们以两种方式通过这一练习。首先,我们调整最大值的 $\ mathbb{T ⁇ d$($d$是图表的规律性) 中的角度。第二,我们调整了列伊变数的参数。我们还讨论了一些硬件和软件问题,以及直接应用和机器学习的若干连接。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月7日
Formalizing Distribution Inference Risks
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月4日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员