Pre-trained models have demonstrated superior power on many important tasks. However, it is still an open problem of designing effective pre-training strategies so as to promote the models' usability on dense retrieval. In this paper, we propose a novel pre-training framework for dense retrieval based on the Masked Auto-Encoder, known as RetroMAE. Our proposed framework is highlighted for the following critical designs: 1) a MAE based pre-training workflow, where the input sentence is polluted on both encoder and decoder side with different masks, and original sentence is reconstructed based on both sentence embedding and masked sentence; 2) asymmetric model architectures, with a large-scale expressive transformer for sentence encoding and a extremely simplified transformer for sentence reconstruction; 3) asymmetric masking ratios, with a moderate masking on the encoder side (15%) and an aggressive masking ratio on the decoder side (50~90%). We pre-train a BERT like encoder on English Wikipedia and BookCorpus, where it notably outperforms the existing pre-trained models on a wide range of dense retrieval benchmarks, like MS MARCO, Open-domain Question Answering, and BEIR.


翻译:培训前的模型在很多重要任务上表现出了超强的力量。 但是,在设计有效的培训前战略以促进模型在密集检索方面的可用性方面,这仍然是设计有效的培训前战略的一个未决问题。 在本文件中,我们提议了一个基于隐蔽自动编码器(RetroMAE)进行密集检索的新的培训前框架。我们提议的框架用于以下关键设计:(1) 以MAE为基础的培训前工作流程,其中输入的句子被不同面具的编码器和解码器污染,最初的句子都是根据嵌入和遮盖的句子来重建的;(2) 不对称的模型结构,配有用于句子编码的大规模直观变换器和极简化的变换器;(3) 不对称的掩码率,在编码器侧面有中度的遮罩(15%),在解码器侧有强烈的遮罩率(50-90%)。 我们预先将一个像英文维基百科和BookCorpus的编码器那样的BEERTER, 其中它明显超越了在大量密集检索基准上的现有预先训练的模型,例如MSMARCO、O-mamamamamaine Regy。

0
下载
关闭预览

相关内容

人大最新《基于Transformer 的视频语言预训练》综述论文
专知会员服务
46+阅读 · 2021年9月27日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员