The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.
翻译:这项工作的目的是为防腐多孔的媒体方程式建立一个减序模型,这类问题的主要挑战是,溶液的科尔莫戈洛夫宽度通常会非常缓慢地衰减,从而使得通常的线性模式-减少顺序方法不合适。在这项工作中,我们调查了对先前工作中提出的方法的调整,该方法以使用瓦塞斯坦温温温热点为基础,以适应非保守性问题。一维测试案例中的数值例子说明了这一方法的优点和局限性,并提出我们今后打算探索的进一步研究方向。