Reed-Muller (RM) codes are known for their good maximum likelihood (ML) performance in the short block-length regime. Despite being one of the oldest classes of channel codes, finding a low complexity soft-input decoding scheme is still an open problem. In this work, we present a versatile decoding architecture for RM codes based on their rich automorphism group. The decoding algorithm can be seen as a generalization of multiple-bases belief propagation (MBBP) and may use any polar or RM decoder as constituent decoders. We provide extensive error-rate performance simulations for successive cancellation (SC)-, SC-list (SCL)- and belief propagation (BP)-based constituent decoders. We furthermore compare our results to existing decoding schemes and report a near-ML performance for the RM(3,7)-code (e.g., 0.04 dB away from the ML bound at BLER of $10^{-3}$) at a competitive computational cost. Moreover, we provide some insights into the automorphism subgroups of RM codes and SC decoding and, thereby, prove the theoretical limitations of this method with respect to polar codes.
翻译:Reed-Muler (RM) 代码以其在短区段制度下的最大可能性(ML) 性能而著称。尽管它是最古老的频道代码类别之一,但发现低复杂性软投入编码编码系统仍然是一个尚未解决的问题。在这项工作中,我们根据RM代码的丰富的自动变形组别,为RM代码提供了多种解码结构。解码算法可被视为多基信仰传播(MBBP)的概括化,并可能使用任何极地或RM解码器作为构成解码器。我们为连续取消(SC)-、SC清单(SCL)和信仰传播(BBP)的构件编码系统提供了广泛的错误率性能模拟。我们进一步将我们的结果与现有的解码系统进行比较,并报告RM(3,7)-代码(例如,0.04 dB远离ML(BLER,10 ⁇ -3}),在竞争性计算成本上可以使用任何极地或极地分解码。我们还提供对RM码和极地解码的自动分解方法的一些了解,从而证明这种方法。