Recent evidence suggests that SARS-CoV-2, which is the virus causing a global pandemic in 2020, is predominantly transmitted via airborne aerosols in indoor environments. This calls for novel strategies when assessing and controlling a building's indoor air quality (IAQ). IAQ can generally be controlled by ventilation and/or policies to regulate human-building-interaction. However, in a building, occupants use rooms in different ways, and it may not be obvious which measure or combination of measures leads to a cost- and energy-effective solution ensuring good IAQ across the entire building. Therefore, in this article, we introduce a novel agent-based simulator, ArchABM, designed to assist in creating new or adapt existing buildings by estimating adequate room sizes, ventilation parameters and testing the effect of policies while taking into account IAQ as a result of complex human-building interaction patterns. A recently published aerosol model was adapted to calculate time-dependent carbon dioxide ($CO_2$) and virus quanta concentrations in each room and inhaled $CO_2$ and virus quanta for each occupant over a day as a measure of physiological response. ArchABM is flexible regarding the aerosol model and the building layout due to its modular architecture, which allows implementing further models, any number and size of rooms, agents, and actions reflecting human-building interaction patterns. We present a use case based on a real floor plan and working schedules adopted in our research center. This study demonstrates how advanced simulation tools can contribute to improving IAQ across a building, thereby ensuring a healthy indoor environment.


翻译:最近有证据表明,2020年造成全球大流行病的病毒SARS-COV-2型病毒主要通过室内环境气溶胶传播,在评估和控制建筑物室内空气质量(IAQ)时需要采取新颖的战略,通过通风和(或)监管人造互动的政策来控制IAQ。然而,在建筑物中,居住者以不同方式使用房间,而且可能并不明显,衡量或结合何种措施导致成本和能源效益高的解决方案,确保整个大楼都有良好的IAQ。因此,在本篇文章中,我们采用了一个新的基于代理的模拟器,ArchABM,目的是通过估计适当房间大小、通风参数和测试政策效果,协助新建或改造现有建筑物,同时考虑到复杂的人造互动模式。最近公布的气溶胶模型经过了调整,以计算每个房间依赖时间的二氧化碳($CO_2美元)和病毒在室内的Ianta浓度。因此,我们采用了一个新的基于代理结构的模拟模型和病毒模拟模型来帮助创建新的建筑物或改造现有建筑物,从而可以灵活地利用一个建筑结构的模型。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员