The wide use of black-box models in natural language processing brings great challenges to the understanding of the decision basis, the trustworthiness of the prediction results, and the improvement of the model performance. The words in text samples have properties that reflect their semantics and contextual information, such as the part of speech, the position, etc. These properties may have certain relationships with the word saliency, which is of great help for studying the explainability of the model predictions. In this paper, we explore the relationships between the word saliency and the word properties. According to the analysis results, we further establish a mapping model, Seq2Saliency, from the words in a text sample and their properties to the saliency values based on the idea of sequence tagging. In addition, we establish a new dataset called PrSalM, which contains each word in the text samples, the word properties, and the word saliency values. The experimental evaluations are conducted to analyze the saliency of words with different properties. The effectiveness of the Seq2Saliency model is verified.
翻译:在自然语言处理中广泛使用黑盒模型给理解决定基础、预测结果的可信度以及模型性能的改进带来了巨大的挑战。 文本样本中的文字具有反映其语义和背景信息的属性, 如语言部分、 位置等。 这些属性可能与单词突出性有一定的关系, 这对研究模型预测的可解释性有很大帮助。 在本文中, 我们探索了单词突出性与单词属性之间的关系。 根据分析结果, 我们进一步从文本样本中的词语及其属性到基于序列标记概念的突出值, 建立了一个绘图模型Seq2Saliency。 此外, 我们还建立了一个名为 PrSalM 的新数据集, 包含文本样本中的每个词、 单词属性和单词突出性值。 实验性评估旨在分析不同属性的单词的突出性。 Seq2Saliity 模型的有效性得到验证。