We consider the Bayesian approach to the linear Gaussian inference problem of inferring the initial condition of a linear dynamical system from noisy output measurements taken after the initial time. In practical applications, the large dimension of the dynamical system state poses a computational obstacle to computing the exact posterior distribution. Model reduction offers a variety of computational tools that seek to reduce this computational burden. In particular, balanced truncation is a system-theoretic approach to model reduction which obtains an efficient reduced-dimension dynamical system by projecting the system operators onto state directions which trade off the reachability and observability of state directions as expressed through the associated Gramians. We introduce Gramian definitions relevant to the inference setting and propose a balanced truncation approach based on these inference Gramians that yield a reduced dynamical system that can be used to cheaply approximate the posterior mean and covariance. Our definitions exploit natural connections between (i) the reachability Gramian and the prior covariance and (ii) the observability Gramian and the Fisher information. The resulting reduced model then inherits stability properties and error bounds from system theoretic considerations, and in some settings yields an optimal posterior covariance approximation. Numerical demonstrations on two benchmark problems in model reduction show that our method can yield near-optimal posterior covariance approximations with order-of-magnitude state dimension reduction.
翻译:我们认为,对线性高山线性推论的巴伊西亚方法,是对线性动态系统初始条件的推论问题,先是从最初时间过后的噪音产出测量中推断出线性动态系统的初始条件。在实际应用中,动态系统状态的较大层面给计算精确的后部分布带来了计算障碍。模型的减少提供了各种计算工具,力求减少这一计算负担。特别是,平衡曲解是一种系统理论方法,这是一种系统削减模型的系统理论方法,它通过预测系统操作者向国家方向交易相关格莱米亚人表达的州方向的可达性和可耐性。我们引入了与推论设置相关的格莱米亚定义,并根据这些推论提出了一种平衡的曲解方法,从而产生一种减少动力性系统,可以廉价地接近后部和变异性。我们的定义利用了(一) 格朗米和先前变异性之间的自然联系,以及(二) 来自相关格莱米和近处国家方向的信息。因此,模型在精确度设置上降低了稳性、稳性排序的模型,从而显示稳妥性排序的排序和排序方法的降低。