Recently, deep Convolutional Neural Networks (CNNs) have revolutionized image super-resolution (SR), dramatically outperforming past methods for enhancing image resolution. They could be a boon for the many scientific fields that involve image or gridded datasets: satellite remote sensing, radar meteorology, medical imaging, numerical modeling etc. Unfortunately, while SR-CNNs produce visually compelling outputs, they may break physical conservation laws when applied to scientific datasets. Here, a method for ``Downsampling Enforcement" in SR-CNNs is proposed. A differentiable operator is derived that, when applied as the final transfer function of a CNN, ensures the high resolution outputs exactly reproduce the low resolution inputs under 2D-average downsampling while improving performance of the SR schemes. The method is demonstrated across seven modern CNN-based SR schemes on several benchmark image datasets, and applications to weather radar, satellite imager, and climate model data are also shown. The approach improves training time and performance while ensuring physical consistency between the super-resolved and low resolution data.


翻译:最近,深革命神经网络(CNNs)使图像超分辨率(SR)发生了革命性的变化,大大优于以往提高图像分辨率的方法。它们可以成为涉及图像或网格数据集的许多科学领域的一股力量:卫星遥感、雷达气象学、医学成像、数字模型等。不幸的是,虽然SR-CNNs产生了令人瞩目的可见的产出,但它们在应用科学数据集时可能会打破物理保护法。在这里,在SR-CNNs中提出了一种“冲印执行”的方法。在应用CNN的最后传输功能时,可以产生一个不同的操作员,这种操作员确保高分辨率输出在2D平均下调中完全复制低分辨率输入,同时改进SR计划的业绩。该方法在七个基于CNN的现代图像数据集中得到了演示,并在气象雷达、卫星成像仪和气候模型数据中应用了该方法。该方法还改进了培训时间和性能,同时确保了超溶解和低分辨率数据之间的物理一致性。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
120+阅读 · 2020年5月28日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
生物探索
3+阅读 · 2018年2月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月27日
Teacher-Student Training for Robust Tacotron-based TTS
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
生物探索
3+阅读 · 2018年2月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员