Recently, deep Convolutional Neural Networks (CNNs) have revolutionized image super-resolution (SR), dramatically outperforming past methods for enhancing image resolution. They could be a boon for the many scientific fields that involve image or gridded datasets: satellite remote sensing, radar meteorology, medical imaging, numerical modeling etc. Unfortunately, while SR-CNNs produce visually compelling outputs, they may break physical conservation laws when applied to scientific datasets. Here, a method for ``Downsampling Enforcement" in SR-CNNs is proposed. A differentiable operator is derived that, when applied as the final transfer function of a CNN, ensures the high resolution outputs exactly reproduce the low resolution inputs under 2D-average downsampling while improving performance of the SR schemes. The method is demonstrated across seven modern CNN-based SR schemes on several benchmark image datasets, and applications to weather radar, satellite imager, and climate model data are also shown. The approach improves training time and performance while ensuring physical consistency between the super-resolved and low resolution data.
翻译:最近,深革命神经网络(CNNs)使图像超分辨率(SR)发生了革命性的变化,大大优于以往提高图像分辨率的方法。它们可以成为涉及图像或网格数据集的许多科学领域的一股力量:卫星遥感、雷达气象学、医学成像、数字模型等。不幸的是,虽然SR-CNNs产生了令人瞩目的可见的产出,但它们在应用科学数据集时可能会打破物理保护法。在这里,在SR-CNNs中提出了一种“冲印执行”的方法。在应用CNN的最后传输功能时,可以产生一个不同的操作员,这种操作员确保高分辨率输出在2D平均下调中完全复制低分辨率输入,同时改进SR计划的业绩。该方法在七个基于CNN的现代图像数据集中得到了演示,并在气象雷达、卫星成像仪和气候模型数据中应用了该方法。该方法还改进了培训时间和性能,同时确保了超溶解和低分辨率数据之间的物理一致性。