The ever increasing amount of GPS-equipped vehicles provides in real-time valuable traffic information for the roads traversed by the moving vehicles. In this way, a set of sparse and time evolving traffic reports is generated for each road. These time series are a valuable asset in order to forecast the future traffic condition. In this paper we present a deep learning framework that encodes the sparse recent traffic information and forecasts the future traffic condition. Our framework consists of a recurrent part and a decoder. The recurrent part employs an attention mechanism that encodes the traffic reports that are available at a particular time window. The decoder is responsible to forecast the future traffic condition.
翻译:越来越多的GPS设备车辆为流动车辆穿越的道路提供了实时有价值的交通信息,因此,为每条道路生成了一套稀少和时间变化的交通报告。这些时间序列是预测未来交通状况的宝贵资产。在本文件中,我们提出了一个深度学习框架,将最近稀少的交通信息编码起来,并预测未来的交通状况。我们的框架包括一个经常性部分和一个解码器。经常部分使用一种关注机制,将特定时间窗口提供的交通报告编码起来。解码器负责预测未来的交通状况。