We introduce two novel generalizations of the Koopman operator method of nonlinear dynamic modeling. Each of these generalizations leads to greatly improved predictive performance without sacrificing a unique trait of Koopman methods: the potential for fast, globally optimal control of nonlinear, nonconvex systems. The first generalization, Convex Koopman Models, uses convex rather than linear dynamics in the lifted space. The second, Extended Koopman Models, additionally introduces an invertible transformation of the control signal which contributes to the lifted convex dynamics. We describe a deep learning architecture for parameterizing these classes of models, and show experimentally that each significantly outperforms traditional Koopman models in trajectory prediction for two nonlinear, nonconvex dynamic systems.
翻译:我们对库普曼操作员的非线性动态模型采用两种新颖的概略方法。其中每一种通用方法都导致在不牺牲库普曼方法独特特性的情况下大大改进预测性能:对非线性、非康韦克斯系统进行快速、全球最佳控制的潜力。第一个通用方法Convex Koopman模型,在解除的空间使用convex而不是线性动态。第二个扩展的库普曼模型,还引入了控制信号的不可置疑的转换,从而促成已解除的convex动态。我们描述了将这些模型类别参数化的深层学习结构,并实验性地显示,在两个非线性、非convex动态系统的轨迹预测中,每种模型都明显优于传统的库普曼模型。